
Racores de compresión

	Materiales	Fluidos	Presión máxima (bar)	a		Resistencia en entornos agresivos		Page
Racores de compresión	resión		(but)	Min.	Max.	Mecánica	Química	
Racores de compresión de latón	Latón	aire comprimido, fluidos industriales	550 (dependien do del tipo de tubo utilizado)	-60°C	+250°C	Excelente	Moderada	137
Racores de compresión de acero inoxidable	Acero inoxidable 316L	Todos fluidos	400 (80 bar en ambientes agresivos)	-60°C	+250°C	Excelente	Excelente	151

Codificación estándar de los racores de compresión

Codificación estándar de los racores PL

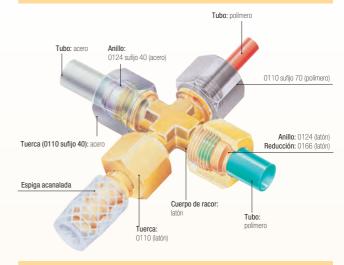
NPT: con adaptador BSPT y NPT

Racores de compresión de latón

Estos racores sofrecen a los usuarios un gran número de posibilidades de conexión con una gran variedad de tubos, sin soldadura ni preparación. Es la garantía de una excelente estanqueidad a lo largo del tiempo con prestaciones máximas.

Ø métrico: 4 a 28 mm

Características técnicas


- Fluidos adecuados: Agua, aceite de mecanizado, combustible, aceite hidráulico, aire comprimido, fluidos químicos, desinfectantes
- Presión de trabajo: De vacío hasta 550 bar
- Temperatura de trabajo: -60°C a +250°C sin junta imperdible, con tubos métalicos

Temperatura de utilización: -20°C a +100°C, con junta imperdible y tubo poliamida. Las prestaciones dependen de los fluidos, del material y del tubo utilizados. El uso está garantizado para un vacío de 755 mm Hg (99% de vacío). El sellado de la rosca está bajo responsabilidad de los usuarios.

Ventajas

- 22 configuraciones
- Excelente estanqueidad gracias al engaste del racor en el tubo
- Junta metálico para una vida útil, presión y temperatura óptimas
- Conexión de distintos tipos de tubos: metálicos, polímero, acero, caucho..
- Conexión de varios diámetros de tubos gracias al sistema de reducción de montaje

Materiales

Reglamentaciones

• PED

REACH

• RoHS

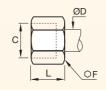
Combinaciones: Ø tubos / paso del fluido

La tabla siguiente indica los diámetros de paso máximos en función de las roscas de implantación en algunos ejemplos de diámetros de tubos.

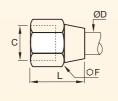
Ø ext. del tubo	Rosca BSPP	Paso máx.
4-5-6	G1/8	4
6-8-10	G1/4	7
10-12-14	G3/8	11
14-15-16-18	G1/2	14
18-20-22	G3/4	18
22-25-28	G1	24

Longitudes de tubos para montaje

Longitud de tubo (L) mínimo a dejar entre 2 racores



ØD	L (mm)	ØD	L (mm)	ØD	L (mm)
4	26.5	12	39	20	51
5	26	14	41	22	54
6	26	15	41	25	62
8	32	16	46,5	28	62
10	39	18	49,5		


Especificaciones técnicas del par de apriete de las tuercas

Par de apriete en daN.m =

par de apriete máximo de una tuerca 0110 y de un anillo 0124, sobre tubo de cobre o latón y sobre tubo de acero

Tuerca 0110 y 0110..40

Tuerca 0110..60

Ø D (mm)	○F 0110	OF 011060	daN.m máx. cobre o latón	○ F 011040	máx. acero
4	10	11	0,7	10	1,5
5	12	13	0,7	12	1,5
6	13	13	1,5	13	2,5
8	14	16	1,5	14	2,5
10	19	20	1,8	19	3
12	22	22	3	22	4,5
14	24	24	3,5	24	5,5
15	24	24	4	24	6
16	27	27	5	27	7
18	30	30	6	30	9
20	32	32	6	32	10
22	36	36	7	36	12
25	41	41	8	41	13
28	42		9		

Racores de compresión de latón

Instalación de los racores de compresión

Corte del tubo

Cortar el tubo de polímero o de metal en forma de codo con una herramienta

Preparación de la conexión

Desbarbar sus bordes interiores y exteriores (tubo de metal); cuando resulte necesario el curvado del tubo, realizarlo antes de la conexión.

Deslizar la tuerca por el tubo; lubricar la rosca del cuerpo, el anillo y la rosca interior de la tuerca para facilitar el apriete (ídem para la versión de acero inoxidable): montar el anillo en el extremo del tubo.

Conexión del tubo

Poner el tubo haciendo tope contra el reborde del cuerpo del racor y preenroscar a mano.

Montaje final

Enroscar la tuerca con la llave, para obtener el engaste del anillo en el tubo: la conexión está realizada cuando se alcanza el par de apriete aconsejado (ver tablas siguientes).

En caso de arrastre del tubo (díametro>14 mm), se recomienda utilizar un refuerzo.

Tipo de tubo recomendado

Tubo de cobre: cobre estirado en frío y en barras rectas.

Tubo de latón: en barras rectas templadas en frío (presión de trabajo idéntico al tubo de cobre) Tubo de "cobre recocido en rollo":

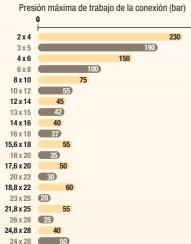
reducir la presión de trabajo en un 35 % y evitar totalmente en caso de vibraciones.

Tubo de acero de circuito: tubo "fino"

estirado en frío, sin soldadura, recocido blanco y en barras rectas. Uso exclusivo en tubos de acero de Ø 6 a 16 mm exterior: espesor máx.

En diámetros superiores a 16 mm en el exterior, el espesor máximo debe ser de

Tubo de poliamida: semi-rígido


En calidad de poliamida rígida, multiplicar todas las cifras de esta tabla por 1,8.

Tipo de configuraciones recomendadas para el montaje tubo-racores

240

Montaje realizado con anillo Parker Legris de latón y tuerca de latón.

Tubo de cobre

Montaje realizado con anillo Parker Legris de acero tratado y tuerca de acero tratado

(serie con sufijo 40).

Montaje realizado con anillo y tuerca Parker Legris de latón.

Tubo de poliamida semi-rígido Parker Legris Presión máxima de trabajo de la conexión (bar)

Coeficientes reductores de la presión de trabajo según la temperatura para tubos semi-rígidos

Temperatura °C	-40°C / -15°C	-15°C/+30°C	+30°C/+50°C	+50°C /+70°C	+70°C/+100°C
Factor	1,8	1	0,68	0,55	0,31

Los racores de compresión de latón Parker Legris no son compatibles con el amoniaco y sus derivados.

Las indicaciones anteriores resultan de nuestra amplia experiencia; al ser cada uso un caso particular, no pueden comprometer nuestra responsabilidad y recomendamos a nuestros clientes realizar pruebas en las condiciones reales de uso.

Racores de compresión de acero inoxidable

Estos racores "universal" ofrecen una excelente resistencia a los ambientes y fluidos agresivos. Resisten las presiones y las temperaturas elevadas, así como los golpes de ariete y las vibraciones intensas. Adecuado para los fluidos alimenticios.

Ø métrico: 6 a 16 mm

Características técnicas

- Fluidos adecuados: Todos los tipos de fluidos
- Presión de trabajo: De vacío hasta 400 bar 80 bar en entornos agresivos)
- Temperatura de trabajo: -60°C a +250°C con tubos metálicos

Par de apriete de la tuerca	DN	6	8	10	12	16
	daN.m	2	3	4	6,5	9,5

Las prestaciones dependen de los fluidos y del tubo utilizados. El uso está garantizado para un vacío de 755 mm Hg (99% de vacío). El sellado de la rosca está bajo responsabilidad de los usuarios.

Ventajas

- Excelente estanqueidad y mantenimiento del racor en el tubo
- · Ausencia de junta para garantizar una vida útil máxima
- Posibilidad de conectar fácilmente distintos tipos de tubos y diámetros a un mismo cuerpo de racor
- No se requiere refuerzo para los tubos de acero inoxidable y de poliamida rígida inferior a 12 mm
- Conexión de diferentes tipos de tuberías y tubos: metal, polímeros, acero, goma...
- Diseñado exclusivamente en acero inoxidable 316L

Materiales

Reglamentaciones

• RoHS • PED • REACH

• 1935/2004

Combinaciones: Ø tubos / paso del fluido

La tabla siguiente indica los diámetros de paso máximos en función de las roscas de implantación en algunos ejemplos de diámetros de tubos.

Longitudes de tubos para montaje

Longitud de tubo (L) mínimo a dejar entre 2 racores.

Ø ext. del tubo	Rosca BSPP	Paso máximo
6	G1/8	4
6-8-10	G1/4	7
10-12	G3/8	11
16	G1/2	14

ØD	L mm ØD		L mm		
4	26,5	10	39		
6	26	12	39		
8	32	16	46,5		

El uso de los racores de compresión Parker Legris está condicionado por los materiales de los tubos instalados. Se incluyen a continuación las tablas recapitulativas de las presiones de trabajo en función de los materiales de los tubos.

Tipo de tubo recomendado

Tubo de poliamida semi-rígido o de fluoropolímero

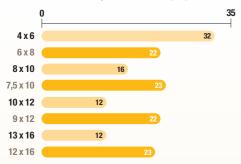
Tubo de acero inoxidable

Tubo "fino" estirado en frío, sin soldadura, hipertemplado, decapado y pasivado, con tolerancia sobre el espesor +/- 0,1 mm. Empleo exclusivo en tubos de acero inoxidable "finos" de \varnothing 6 a 16 mm exterior (espesor máximo 1 mm).

Tipo de configuraciones recomendadas para el montaje tubo/racores

Montaje realizado con anillo y tuerca Parker Legris de acero inoxidable y un refuerzo.

Tubo de acero inoxidable


Tubo de acero inoxidable: en barras rectas templadas en frío (resultados idénticos)

Tubo de acero inoxidable recocido en rollos: reducir la presión de trabajo en un 35 %; evitar totalmente en caso de vibraciones.

Racores de compresión de acero inoxidable

Tubo de poliamida semi-rígida

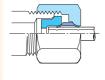
Presión máxima de trabajo de la conexión (bar)

Tubo de acero inoxidable

Presión máxima de trabajo de la conexión (bar)

Coeficientes reductores de la presión de trabajo según la temperatura para tubos semi-rígidos

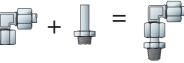
Temperaturas °C	-40°C / -15°C	-15°C / +30°C	+30°C / +50°C	+50°C/+70°C	+70°C/+100°C
Coeficientes	1,8	1	0,68	0,55	0,31


Las indicaciones anteriores resultan de nuestra amplia experiencia. Al ser cada uso un caso particular, no pueden comprometer nuestra responsabilidad y recomendamos a nuestros clientes realizar pruebas en las condiciones reales de uso.

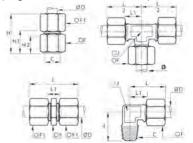
Instalación

Montaje

El racor se compone de 3 piezas (cuerpo / anillo / tuerca). Para el esquema de las etapas de montaje, ver página "Racores de compresión de latón".


Esquema: producto acabado montado

Cuando aparece una muy ligera deformación interior del tubo, significa que se ha logrado un buen engaste.


Montaje de codos orientables

Racores especiales

Si los racores de compresión de acero inoxidable estándar no se pueden utilizar, Parker Legris puede estudiar, sobre un pliego de condiciones, racores específicos.

Accessorios roscados y regletas de distribución

	Materiales	Fluidos	Presión máxima	Presión Temperatura máxima		Resistencia en entornos agresivos		Página
			(bar)	Min.	Máx.	Mecánica	Química	
Accessorios roscados y regl	etas de distrib	ución						
Adaptadores en latón niquelado	Latón niquelado	Aire comprimido	60	-10°C	+80°C	Buena	Moderada	163
Adaptadores en latón	Latón	Aire comprimido	200	-40°C	+150°C	Buena	Moderada	168
Adaptadores en acero inoxidable	Acero inoxidable 316L	Todos los fluidos	200	-20°C	+180°C	Excelente	Excelente	173
Regletas de distribución	Aluminio anodizado, latón	Aire comprimido	20	-10°C	+80°C	Excelente	Buena	176
Tapones roscados	Latón, latón niquelado, acero inoxidable, acero	Todos los fluidos (dependiendo de los materiales)	200	-60°C	+180°C	Excelente	Moderada a Excelente	178
Accessorios	FKM, cobre, polímero	Todos los fluidos (dependiendo de los materiales)	250	-250°C	+260°C		Excelente	182